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The influence of a size distribution on the angular dependence of the quasielastically scattered light is 
studied for (i) large hard spherical particles and (ii) large f lexible chain molecules. For the spherical 
particles the angular dependence is shown to depend solely on the size distr ibution and the particle. 
scattering factor. Combination of conventional elastic light scattering with quasielastic light scattering 
allows the determination of the z-average radii moments rz~ (n = -1 ,  1, 2 . . . .  ) which define the size 
distribution. Flexible chains - linear and branched ones - show in any case a linear dependence of 
the apparent diffusion constant Dap p = p/q2 on q = (47r/X) sin 0/2, when q becomes large. This beha- 
viour represents the f lex ib i l i ty  of the spring-bead model with strong hydrodynamic interaction. The 
initial part on the other hand form a straight line when Dap p is plotted against q2. The intercept of this 
straight line is the z-average diffusion constant while the slope is proportional to the z-average mean 
square radius of gyration. Thus, the polydispersity can be estimated from D z and (S2)z while the 
asymptote at large q-values is determined by the internal f lex ib i l i ty  of the molecule. 

INTRODUCTION 

The line width broadening of scattered light from large 
Brownian particles in solution or the corresponding time cor- 
relation function is influenced by a number of different 
types of motion. There are three main sources (1) irregular 
translational motions of the centre of mass (slow), (2) irregu- 
lar rotations of geometrically anisotropic particles around 
the centre of mass, (fast); and (3) internal modes of motion 
of sections of a flexible particle, (spectrum of slow to very 
fast motions). Each of these modes shows a single exponen- 
tial decay such that the total correlation function is 1-8 

gl(t)= ~ e - r / t  

/ 

(1) 

In this equation gl( t)  is the normalized electric field correla- 
tion function 

(E(0) E *( t) ) 
gl( t )  - (2) 

(IE(0) 2 I) 

which is related to the scattering intensity correlation func- 
tion G2(t)  that can be measured by means of special fast 
computers 5,6,8,9 

G2(t ) = (i(0) i( t))  = A + B Igl(t)  21 (3) 

i(t) is the scattering intensity at time t and A and B are con- 
stants. 

The problem in an actual system is even more complex 
than described by equation (1) since most of the Brownian 
particles show a certain size distribution. Thus, the correla- 

tion function is actually an average of the kind 

~ WNMNPN(q) e-F/Nt 

N j 
g l ( t )  = (4) 

~ WNMNPN(q) 
N 

Here w N is the weight fraction of a particle of molecular 
weight M N and N is a labelling index which in the case of a 
macromolecule is just the degree of polymerization. P(q) 
is the particle scattering factor (static correlation function 
in space, or static structure factor) and q is the scattering 
vector 

q = (4rr/X)sin 0/2 (5) 

with X the wavelength of the light in the medium and 0 the 
scattering angle. 

The different modes of motion and the polydispersity ap- 
pear in equation (4) to be closely mixed up, and the ques- 
tion arises whether the two effects can be separated by the 
choice of appropriate measurements. The purpose of the 
present paper is to show that under certain circumstances 
(hard spherical particles) the distribution function can in 
fact be determined from the combination of quasi-elastic 
with integrated (conventional) light scattering. In other 
cases (flexible chain molecules, linear or branched) the 
effects of internal modes and of polydispersity turn out to 
be well separated in the region of large q-values. The derived 
equations have not yet been checked experimentally, and 
the paper is meant mainly as a suggestion to experimentalists 
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to plan their experiments such that the integrated and quasi- 
elastically scattered light can be recorded simultaneously. 

HARD SPHERES 

Shape of  the correlation function 
Because of the rigidity and the symmetry of hard spheres 

there is no effect of internal modes of motion and of the 
particle rotation. The correlation function has been solved 
rigorously 4,6 

gl(t)  = XWNMNPN(q)e--DNq2t (6) 

EWNMNPN(q) 

where D N is the translational diffusion coefficient of spheres 
with molecular weight M N. The validity of equation (6) has 
been checked experimentally by mixtures of two sizes of latex 
particles m'l~. In this case the correlation function is com- 
posed of two exponentials, and the two decay constants 1`1 = 
Dlq 2 and 1" 2 = D2q 2 can in favourable cases be well deter- 
mined by a fit of the experimental correlation function. For 
a distribution function this procedure is no longer feasible 
and instead of this it is more sound to consider the 
approximation~2, ~3 

gl(t)  ~_ e - r t ( 1  +/22t2 /2 . . .  ) (7) 

where the initial decay constant V and 122 are related to the 
first two cumulants defined by Koppel. For the first cum- 
ulant one finds from equation (6) 

-F = q2 Y'WNMNPN(q)DN (8) 

~,WNMNPN(q) 

At q ~ 0 the particle scattering factors of the individual 
spheres become 1, and in that limit one has 1.-22 

q--,O ZWNMN 
- D z (9) 

which is the definition of the z-average of the translational 
diffusion coefficient. In general, however, ~/q2 depends on 
the scattering angle and will be called, therefore, an apparent 
diffusion coefficient 

F/q2 = D app(q) = D z.f(q) (1(3) 

The function f(q) depends on the particle scattering factors 
of the individual particles and on the polydispersity. For 
monodisperse samples the sum in equation (8) consists of one 
term only and P(q) cancels; 1`/q2 is independent o fq  and 
now equals the translational diffusion coefficient D. 

Recently Aragon and Pecora have calculated the correla- 
tion function gl(t)  for compact and for hollow spheres 
which have a Schulz-Zimm distribution in size 23-2s. They 
found that the initial slope at a fixed angle is diminished as 
~e  polydispe_rsity increases if log gl(t)  is plotted against 
Dq 2,t, where D = Dn is the number average of the transla- 
tional diffusion coefficient. This behaviour is not in contra- 
diction to equation (9) as the decay constant is actually 
Dzq2t and not Dnq2t (see equation (9)), and quite generally 
the inequality holds (see appendix) 

Dz <-Dw <~Dn (11) 

(The subscript n denotes the number average and should 
not be confused with the subscript N which is a labelling 
index in sums). The initial decay would not change by the 
use of D z. 

More relevant is the question to what extent the share 
of the correlation function is changed by a size distribution: 
Pecora 23 compared the exact correlation function with a 
least square single exponential fit. Significant deviations were 
found i fg l ( t  ) has decayed below 15% of its initial value. 
This means that polydispersity can be determined from the 
analysis of the experimental correlation function if the base 
line A in equation (3) can be measured sufficiently well. 
Since the intensity correlation function G2(t ) is proportional 
to [gl(t)2 i a value ofgl( t )  = O. 15 corresponds to a difference 
of G2(t ) - A = 0.022. This example clearly demonstrates 
that the base line should be measurable to an accuracy of at 
least 0.5% before quantitative conclusions can be drawn on 
the polydispersity. A much stronger deviation from a single 
exponential occurs, however, for the logarithmic normal 
distribution. (The properties of the Schulz-Zimm and the 
logarithmic normal distributions are given in the consecutive 
paper26). Still the limitation of applying Koppel's cumu- 
lants is clearly stressed by Pecora's calculation 23. 

Angular dependence of the apparent diffusion coefficient 
For small particles, i.e. if (S 2) < (X/20) 2, the analysis of 

gl(t)  is certainly the only possibility for an estimation of 
the polydispersity of the system. For larger particles, how- 
ever, the angular dependence of the apparent diffusion coef- 
ficient gives far more detailed information on the polydis- 
persity than the shape of the correlation function. This in- 
formation on the polydispersity and on the type of the size 
distribution can be extracted from Dap p as follows. A slight 
rearrangement of equation (8) gives 

~/q2 = (XWNMNPN(q)DN)/(Y'WNMN) 

(Y, WNMNPN(q))/(ZWNMN 

1 ZWNMNPN(q)D N 

Pz(q) ZWNMN (12) 

o r  

~WNMNPN(q)DN 
Dapp(q)Pz(q) = = (DP(q)) z (12') 

~,WNMN 

where Pz(q) is the z-average of the particle scattering factor 
which is observed experimentally in conventional integrated 
light scattering. Now, the particle scattering factors of the 
individual particles PN(q) may be expanded in a power 
series in terms ofq  2. 

PN(q) = I -a l r~q2  +a2r4 q4--a3r~vq 6 + . . .  (13) 

The first coefficients a i are for compact spheres 27 al = 1/5, a2 
= 3/175 and for hollow spheres28'29a 1 = 1/3, a 2 = 2/45, a 3 = 
1/415. 

According to Einstein and Stokes the diffusion coefficient 
is related to the sphere radius r N 

DN = k T/(67rrlOrN) = A/rN (14) 
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Insertion of the last two equations into equation (12') gives 

Dapp(q)Pz(q ) = A [(r-1)z - alrzq 2 + 

a2(r3)zq 4 - a3(r5 )zq6 + . . . ]  (15) 

Similarly the power expansion of Pz(q) yields 

Pz(q) = 1 - al(r2)zq2 + az(r4)zq4 - a3(r6)zq6 +. (16) 

whe re 

WNMN~)kN 

N 
(rk)z = (17) 

WNMN 

N 

Since Dapp(q) can be measured by means of quasi-elastic 
scattering and Pz(q) by conventional integrated scattering 
the even moments of(rk)z  can be determined from a fit of 
the angular dependence of the integrated scattered light while 
the odd moments can be determined from the product of 
quasi-elastic and integrated scattering curves:Dapp(q)Pz(q). 

The full set of moments contains in principle all informa- 
tion on the size distribution, but in actual measurements 
only the first few members can be determined to a sufficient 
accuracy. Still the type of the size distribution and its width 
can be determined within certain limits if only the first three 
moments are known. This is shown in the consecutive paper 26. 

FLEXIBLE CHAINS 

Randomly coiled linear or branched chains have approxi- 
mately spherical shape but also considerable internal flexi- 
bility which has now an effect on the line width in addition 
to the polydispersity. In the pioneering work by Pecora 2'3 
the effect of the first two modes of motion on the correla- 
tion function was calculated on the basis of the spring-bead 
model neglecting hydrodynamic interactions between the 
beads (Rouse model). A complete solution enclosing the 
effect from all modes of motion was not possible. B/ildt 3° 
on the other hand could evaluate the corresponding sum for 
the initial decay constant and he obtained the surprisingly 
simple result for the Rouse case. 

Dapp(q) = I'/q 2 = DIP(q) (18) 

In dilute polymer solutions, however, the hydrodynamic 
interaction is strong and plays the predominant role, and 
instead of equation (18) a more complicated function arises 
for the angular dependence ofDap p, which depends on the 
type of the molecular structure and the size distribution. 
Calculation ofDap p has become possible recently by the 
application of the projection operator technique 31 in combi- 
nation with cascade theory 32'33. The angular dependence has 
been calculated for monodisperse and polydisperse linear 
chains a2 as well as for two types of branched polymers 33 
which differ significantly in the width of their molecular 
weight distributions. 

In spite of the vast differences in the molecule architec- 
ture and the molecular weight distribution some common 
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features are observed. For small values of the scattering vec- 
tor q one finds 

Dapp(q) -+ Dz(1 + el(S2)z q2 - . . . )  (19) 

while for large q-values one has 

kt 
Dapp(q ) ~ e2Dz(S2)lz/2, q = e3 _ _  qt 

rTo 

where 

(20) 

c 2 = cl/2 (2) 

Hence, a plot ofDap p against q2 gives in any case an initial 
linear increase which is proportional to the mean square 
radius of gyration. The coefficients Cl depend on the mole- 
cular architecture and are 1/6 for linear chains and f- 
functional random polycondensates, and 1/12 for a branched 
molecule formed under restrictions 33. The second equality 
in equation (20) results from the fact that D z is proportional 
to (S2)z -1/2, where the proportionality factors depend on the 
polydispersity. Thus, the coefficients c 3 depend on both the 
molecular architecture and polydispersity. The coefficients 
are for the/:functional random polycondensates c 3 = 0.053, 
for the under restriction branched molecule c3 = 0.025 and 
for linear chains c 3 = 0.0462 K(m) where 

m + 1.868 
K(m) = 0.08 (22) 

m + l . 5  

The polydispersity parameter m is related to the weight and 
number average degree of polymerization 

m = (Pw/Pn - 1) -1 (23) 

The simple q-dependence ofDap p at large q-values was first 
derived by Dubois-Violette and de Gennes 34, and the fact 
that this asymptotic behaviour is obtained for all flexible 
molecules is obviously the result of the internal flexibility 
of Gaussian chains in the presence of hydrodynamic inter- 
actions. In other words this asymptotic behaviour represents 
the effect of internal modes of motion. The effect of branch- 
ing and polydispersity is condensed in the slope which is the 
product of Dz(S2)lz/2 and a numerical factor which depends 
on the type of branching. The latter in turn can be deter- 
mined from the initial slope of Dapp(q) against q2. Hence, 
the two effects of polydispersity and of internal motions are 
separable in this simplest case of ideal flexibility. Note that 
the effect of excluded volume is not included in equations 
(19)-(22).  

Information on the type of branching can be obtained 
when the quasi-elastic light scattering measurements are com- 
bined with the common integrated light scattering. As shown 
in a previous paper 32'33 a plot ofDappagainst l[Pz(q) on a 
double logarithmic scale should give a straight line with a 
slope which is expected to lie in between 1/2 for ran- 
domly branched polymers and 1/4 for non randomly branched 
chains. Figure 1 shows as an example such a plot for amylo- 
pectin where a slope of 0.39 is observed as. 

CONCLUSIONS 

The question of separability of the two effects of polydis- 
persity and internal modes of motion can now be answered 
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Plot of  the apparent dif fusion coefficient Dap p obtained 
by quasi-elastic light scattering against the reciprocal particle scatter- 
ing factor p l ( q ) - I  obtained by conventional integrated light scattering 
for Amylopectin 3-limit dextrin in 1 N NaOH aqueous solution at 
25 ° cantrigades. D z = 7.4 x 10 -9 cm2sec, M w = 500 x 106, (S2)z = 
24. x 104 nm 2. The curve corresponds to measurements extrapolated 
to zero concentrat ion. Dap p = DzPz(q)-0. 39 

for hard spheres and for flexible chain molecules. The poly- 
dispersity can for large Brownian particles at least be estima- 
ted if  the shape of  the individual particles is known. To this 
end, however, quasi-elastic and conventional light scattering 
should be combined, and for reasons of  keeping the syste- 
matic errors low these measurements should be performed by 
the same instrument. Such simultaneous measurements are 
in principle feasible with the photo-counting technique al- 
though not  ye t  possible with the commercially available 
instruments. 

For  hard spheres a non-linear least square fit of  Pz(q) and 
of  Dapp(q)Pz(q) will give the moments  (rk)z ,  for k = - 1 ,  I, 
2 . . . .  which in turn will allow the reconstruction of  the size 
distribution. For  flexible chains the two moments  (1/Rs) z 
and <S2)z can be obtained only because the asymptotic be- 
haviour is here determined by the internal flexibility. For  
hard spheres the asymptotic region is determined by the 
higher moments.  The Stokes radius R s is given by the formal 
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APPENDIX 

The number-(n), weight-(w) and z-averages of the diffusion 
constant are defined as 

equation ~fND N 
Dn = - -  (A1) 

D = kT/(6mloRs) (23) Z f N  

Although these firm statements can be made only for the 
two limiting cases of  hard spheres and ideal flexible chains it 
is tempting to speculate on the behaviour of  fairly soft 
spheres. Probably the initial part at low q-values will be de- 
fined by the particle polydispersity but  the range of  larger 
q-values will reflect the influence of  the internal mobil i ty,  
because these modes comprise only parts of  the molecule, 
and smaller dimensions correspond to larger q-values. 
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~,WNDN ZMNfNDN 
D w = - -  - (A2) 

~WN ~MNfN 

~,MNWNDN ~,M2N fNDN 
Dz = - (A3) 

ZMNWN Z M 2  f N 

where fN  is the frequency distribution of particles with 
molecular weight M N and diffusion constant DN, and w N is 
the corresponding weight distribution. According to the 
Eins te in-Stokes  relationship one has 

kT  
D = - -  (A4) 

67rr/0 Rs 

and the Stokes radius R s can be assumed to increase with 
molecular weight as 

Rs ~ M u (A5) 

(compact  spheres: v = 2/3, hollow spheres: v = 1, random 
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coils under theta-conditions: v= 1/2). 

~ f N ( 1 / M ~ )  
D n = K 

~ f N  

D w = K  
~ ( f N M N ) ( 1 / M ~ )  

ZfNMN 

Therefore 

(A6) 

(A7) 
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ZqNMZN)(1/M~) 
D z = K ~ f N M  2 (A8) 

where K is a constant which depends on the particle struc- 
ture but which does not change with the particle weight. It 
is obvious from equations (A6)-(A8) that small values of 
(1 /Mfv )  are much stronger weighted in D z than in D w and 
D n ;thus 

D z <~D w ~ D  n (11) 
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